WIRING MANUAL & DIAGRAMS

199R10555

HP EFI and Dominator EFI Systems
Contents
1.0 Manual Overview .. 3
 1.1 Important Wiring “Do’s and Don’ts” .. 3
2.0 ECU Installation, Connectors, and Pinout .. 3
 2.1 Pinout .. 5
3.0 Main Harness ... 7
4.0 Primary Sensors .. 7
 4.1 Throttle Position Sensor (TPS) .. 7
 4.2 Manifold Air Pressure Sensor (MAP) .. 8
 4.3 Coolant Temperature Sensor (CTS) ... 8
 4.4 Manifold Air Temperature Sensor (MAT) .. 8
 4.5 Knock Sensor (Knock) ... 8
 4.6 Wide Band Oxygen Sensor (WB02) .. 8
 4.7 Fuel Pressure (Fuel) ... 8
 4.8 Oil Pressure (Oil) .. 9
 4.9 CANbus (CAN) .. 9
5.0 Primary Outputs ... 9
 5.1 Idle Air Control (IAC) .. 9
 5.2 Fuel Injector Outputs (Injectors) .. 9
 5.3 Ignition Adapter (Ignition) ... 10
6.0 Loose Wires .. 10
7.0 Main Power .. 11
 7.1 Overview .. 11
8.0 Ignition System Wiring ... 11
 8.1 LSx Engines with 24x Crankshaft Reluctor Wheel .. 11
 8.2 LSx Engines with 58x Crankshaft Reluctor Wheel ... 11
 8.3 Small Cap Computer Controlled GM HEI ... 12
 8.4 Ford TFI ... 12
 8.5 NON- ECU Controlled Timing Applications (ex. GM Non-ECU Controlled Large Cap HEI) .. 15
 8.6 Magnetic Crank Pickup .. 17
 8.7 Magnetic Cam Pickup ... 18
 8.8 Hall Effect Crank Pickup .. 19
 8.9 Hall Effect Cam Pickup .. 20
 8.10 Holley Distributorless Ignition System (DIS) .. 20
9.0 Programmable Inputs and Outputs ... 26
 9.1 Inputs .. 26
 9.2 Outputs .. 27
10.0 Nitrous System Wiring .. 27
11.0 Water/Methanol System Wiring ... 28
 11.1 Required Wiring .. 28
 11.2 Optional Wiring .. 29
12.0 Electronic Transmission Wiring .. 29
13.0 Wiring Appendix ... 30
1.0 Manual Overview
This manual contains information and diagrams related to wiring most Holley EFI products including ECU’s, ignition systems, nitrous systems, water/methanol injection systems, sensors, and more.

1.1 Important Wiring “Do’s and Don’ts”

An EFI system depends heavily on being supplied a clean and constant voltage source. The grounds of an electrical system are just as important as the power side.

HP and Dominator ECU’s both contain multiple processing devices that require clean power and ground sources. The wiring harnesses for them must be installed in such a manner that they are separated from “dirty” power and ground sources.

DO’S
- Install the main power and ground directly to the battery.
- Keep sensor wiring away from high voltage or “noisy/dirty” components and wiring, especially secondary ignition wiring, ignition boxes and associated wiring.
- Use shielded/grounded cable that is supplied for wiring crankshaft and camshaft signals.
- Properly solder and heat shrink any wire connections.
- It is critical that the engine has a proper ground connection to the battery and chassis.
- On GM LSx engines, always install the black “ignition ground” wire in the harness to the engine block or cylinder head.

DON'TS
- DO NOT EVER run high voltage or “noisy/dirty” wires in parallel (bundle/loom together) with any EFI sensor wiring. If wires need to cross, try to do so at an angle.
- Do not let Crank and Cam signal wiring near spark plugs and coil wires.
- Do not run non-shielded/grounded wire for crankshaft and camshaft signals, especially magnetic pickups.
- Do not run the USB Communications cable near or with any noisy wires.
- Do not exceed the current limits provided for the various outputs. If current levels exceed these, use the appropriate relay or solenoid drivers.
- Do not use improper crimping tools.
- Don’t use things like “t-taps”, etc. Use solder and heat shrink.
- It is never recommended to splice/share signal wires (such as TPS, etc) between different electronic control units.
- Don’t wire items that require “clean” ground or power to the same points.

2.0 ECU Installation, Connectors, and Pinout

ECU Mounting – The ECU is packaged with mounting hardware. This hardware includes stainless steel fasteners and locknuts and vibration absorbers. The vibration absorbers should be mounted between the ECU and mounting surface. If the mounting surface isn’t flat, don’t over-tighten the mounting screws.

Battery Power Connection – Both the HP and the Dominator ECU’s share the same main battery power connector. Looking at the front, this connector is at the far right side. The bottom position, Terminal “A” is the ground. The upper position, Terminal “B” is the positive terminal. Always use the fused power cable with the proper connectors supplied by Holley only.

USB Communications Connector – Both the HP and Dominator ECU’s share the same USB connector. Looking at the front, the connector is at the far left side. This connection is a common “mini USB” connector, typically used for digital cameras and other devices. Holley offers a USB cable with a sealed connector, PN 558-409 for applications were the USB cable will be plugged in, and the ECU is mounted in a dirty environment.

HP ECU – The HP ECU has two main connectors:
- P1A - The first connector next to the USB connector is the “P1A” connector (34 pin). This connector is primarily an “Input” connector. It contains all the sensor inputs and wide band oxygen sensor control.
- P1B - The second connector is the “P1B” connector (26 pin). This connector is the “output” connector. It has 8 injector outputs, 8 DIS ignition outputs, 4 IAC outputs, and 4 user programmable outputs.
Dominator ECU – The Dominator ECU contains the same two main connectors that the HP ECU has - P1A and P1B. The main wiring harnesses are identical between the two, meaning a Dominator ECU can be installed in place of an HP ECU.

The Dominator ECU has **four** additional connectors that the HP does not. They are as follows and are seen on Figure 2.

1. **P2A** – The P2A connector is an “Input” connector for the following purposes:
 - #2 wide band oxygen sensor input
 - A variety of user programmable inputs.
2. **P2B** – The P2B connector is an “Output” connector for the following purposes:
 - Four additional injector driver outputs.
 - Four Additional coil driver outputs
 - A variety of user programmable outputs.
3. **P3** – The P3 connector contains the following:
 - Intended for use for Drive By Wire throttle body operation
 - It contains a dedicated pin for the “multi-map selector”, (PN 558-407)
 - Contains a variety of user programmable inputs and outputs
4. **P4** – The P4 connector is intended for electronic transmission control for GM 4L60-80E transmissions. If an electronic transmission is not used, all the pins (which contain various input and output options) or open for use as user configurable selections.

NOTE: All connectors are keyed differently, so it is not possible to install them incorrectly.

Purchasing Connectors

The P2A, P2B, P3, and P4 can be purchased in two different manners. Each can be purchased individually. These kits contain the connector as well as all the wires that would be populated into them. The wires have the pins properly crimped onto them, but are not inserted into the connector. The second method is to purchase a kit which has all the connectors and pins, but does not have any wiring.

The PN’s are as follows:

- **558-401** – **P2A Auxiliary Harness** - Contains connector and loose wires with crimped pins. It also contains the #2 WB02 sensor input which is properly wired and terminated into connector.
- **558-402** – **P2B Auxiliary Harness** – Contains connector and loose wires with crimped pins.
- **558-403** – **P3 Auxiliary Harness** - Contains connector and loose wires with crimped pins.
558-404 – P4 Auxiliary Harness - Contains connector and loose wires with crimped pins.

558-405 – GM 4L60/80E Transmission Harness – Complete terminated harness with P4 connector to operate GM electronic transmissions.

558-406 – GM Drive By Wire Harness – Complete terminated harness with P3 connector to operate late GM drive by wire systems.

558-408 – P2A, P2B, P3, P4 Connector and Pin Kit – Contains connectors and pins, but no wiring.

NOTE: When referring to the harness, the various connectors are designated with a “P”. When referring to the ECU, the connectors are designated with a “J”. They both refer to the same connection point.

2.1 Pinout

The following is a pinout of all connectors.

The P1A and P1B connectors and pinout are identical for the HP and Dominator ECU’s.

<table>
<thead>
<tr>
<th>P1A Connector</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Coil - Input</td>
</tr>
<tr>
<td>A2</td>
<td>Fuel Pump Out (+12v) (10A Max)</td>
</tr>
<tr>
<td>A3</td>
<td>Input #2 (F52THG)</td>
</tr>
<tr>
<td>A4</td>
<td>Input #4 (F5G)</td>
</tr>
<tr>
<td>A5</td>
<td>TPS Input</td>
</tr>
<tr>
<td>A6</td>
<td>Points Trigger Output</td>
</tr>
<tr>
<td>A7</td>
<td>WB1 COMPR2</td>
</tr>
<tr>
<td>A8</td>
<td>WB1 Shield</td>
</tr>
<tr>
<td>A9</td>
<td>WB HTR -</td>
</tr>
<tr>
<td>A10</td>
<td>Switched +12v Input</td>
</tr>
<tr>
<td>A11</td>
<td>Manifold Air Temp Input</td>
</tr>
<tr>
<td>A12</td>
<td>Input #1 (F52THG)</td>
</tr>
<tr>
<td>A13</td>
<td>Input #3 (F5G)</td>
</tr>
<tr>
<td>A14</td>
<td>Cam/Crank Ground</td>
</tr>
<tr>
<td>A15</td>
<td>Gauge Digital Output</td>
</tr>
<tr>
<td>A16</td>
<td>WB1 COMPR1</td>
</tr>
<tr>
<td>A17</td>
<td>WB1 VS-/IP+</td>
</tr>
<tr>
<td>A18</td>
<td>Sensor Ground</td>
</tr>
<tr>
<td>A19</td>
<td>Engine Coolant Temp Input</td>
</tr>
<tr>
<td>A20</td>
<td>Oil Pressure Input</td>
</tr>
<tr>
<td>A21</td>
<td>Knock #2 Input</td>
</tr>
<tr>
<td>A22</td>
<td>Cam Sync Input / Ignition Bypass Output</td>
</tr>
<tr>
<td>A23</td>
<td>Map Sensor Input</td>
</tr>
<tr>
<td>A24</td>
<td>CAN Lo</td>
</tr>
<tr>
<td>A25</td>
<td>WB1 VS+</td>
</tr>
<tr>
<td>A26</td>
<td>Sensor +5v</td>
</tr>
<tr>
<td>A27</td>
<td>NOT USED</td>
</tr>
<tr>
<td>A28</td>
<td>EST/Spout Output</td>
</tr>
<tr>
<td>A29</td>
<td>Knock #1 Input</td>
</tr>
<tr>
<td>A30</td>
<td>Crank Speed Input</td>
</tr>
<tr>
<td>A31</td>
<td>Fuel Pressure Input</td>
</tr>
<tr>
<td>A32</td>
<td>CAN Hi</td>
</tr>
<tr>
<td>A33</td>
<td>WB1 IP+</td>
</tr>
<tr>
<td>A34</td>
<td>WB HTR +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1B Connector</th>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
<td>IAC A Lo</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>IAC A Hi</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>Output #4 (G P-)</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>Injector F Output</td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>Injector G Output</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>Injector H Output</td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>Injector E Output</td>
</tr>
<tr>
<td></td>
<td>B8</td>
<td>IAC B Lo</td>
</tr>
<tr>
<td></td>
<td>B9</td>
<td>IAC B Hi</td>
</tr>
<tr>
<td></td>
<td>B10</td>
<td>Output #3 (G P-)</td>
</tr>
<tr>
<td></td>
<td>B11</td>
<td>Output #2 (H P+)</td>
</tr>
<tr>
<td></td>
<td>B12</td>
<td>Output #1 (H P+)</td>
</tr>
<tr>
<td></td>
<td>B13</td>
<td>Injector D Output</td>
</tr>
<tr>
<td></td>
<td>B14</td>
<td>EST Ground Output</td>
</tr>
<tr>
<td></td>
<td>B15</td>
<td>EST 2 Output (Cylinder #2)</td>
</tr>
<tr>
<td></td>
<td>B16</td>
<td>EST 4 Output (Cylinder #4)</td>
</tr>
<tr>
<td></td>
<td>B17</td>
<td>EST 6 Output (Cylinder #6)</td>
</tr>
<tr>
<td></td>
<td>B18</td>
<td>EST 8 Output (Cylinder #8)</td>
</tr>
<tr>
<td></td>
<td>B19</td>
<td>Injector A Output</td>
</tr>
<tr>
<td></td>
<td>B20</td>
<td>EST 12V Output</td>
</tr>
<tr>
<td></td>
<td>B21</td>
<td>EST 1 Output (Cylinder #1)</td>
</tr>
<tr>
<td></td>
<td>B22</td>
<td>EST 3 Output (Cylinder #3)</td>
</tr>
<tr>
<td></td>
<td>B23</td>
<td>EST 5 Output (Cylinder #5)</td>
</tr>
<tr>
<td></td>
<td>B24</td>
<td>EST 7 Output (Cylinder #7)</td>
</tr>
<tr>
<td></td>
<td>B25</td>
<td>Injector C Output</td>
</tr>
<tr>
<td></td>
<td>B26</td>
<td>Injector B Output</td>
</tr>
<tr>
<td>Pin</td>
<td>Function</td>
<td>Pin</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>-----</td>
</tr>
<tr>
<td>A1</td>
<td>Input #6 (52THG)</td>
<td>B1</td>
</tr>
<tr>
<td>A2</td>
<td>Input #10 (52THG)</td>
<td>B2</td>
</tr>
<tr>
<td>A3</td>
<td>Input #14 (5G)</td>
<td>B3</td>
</tr>
<tr>
<td>A4</td>
<td>Input #18 (FS)</td>
<td>B4</td>
</tr>
<tr>
<td>A5</td>
<td>Input #21 (5HG)</td>
<td>B5</td>
</tr>
<tr>
<td>A6</td>
<td>Input #25 (5HG)</td>
<td>B6</td>
</tr>
<tr>
<td>A7</td>
<td>WB2 COMPR2</td>
<td>B7</td>
</tr>
<tr>
<td>A8</td>
<td>WB2 Shield</td>
<td>B8</td>
</tr>
<tr>
<td>A9</td>
<td>WB2 HTR -</td>
<td>B9</td>
</tr>
<tr>
<td>A10</td>
<td>Input #5 (52THG)</td>
<td>B10</td>
</tr>
<tr>
<td>A11</td>
<td>Input #9 (52THG)</td>
<td>B11</td>
</tr>
<tr>
<td>A12</td>
<td>Input #13 (5G)</td>
<td>B12</td>
</tr>
<tr>
<td>A13</td>
<td>Input #17 (FS)</td>
<td>B13</td>
</tr>
<tr>
<td>A14</td>
<td>Input #20 (5HG)</td>
<td>B14</td>
</tr>
<tr>
<td>A15</td>
<td>Input #24 (5HG)</td>
<td>B15</td>
</tr>
<tr>
<td>A16</td>
<td>WB2 COMPR1</td>
<td>B16</td>
</tr>
<tr>
<td>A17</td>
<td>WB2 VS-/IP+</td>
<td>B17</td>
</tr>
<tr>
<td>A18</td>
<td>Sensor Ground</td>
<td>B18</td>
</tr>
<tr>
<td>A19</td>
<td>Input #8 (52THG)</td>
<td>B19</td>
</tr>
<tr>
<td>A20</td>
<td>Input #12 (5G)</td>
<td>B20</td>
</tr>
<tr>
<td>A21</td>
<td>Input #16 (FS)</td>
<td>B21</td>
</tr>
<tr>
<td>A22</td>
<td>Speed Inputs Ground</td>
<td></td>
</tr>
<tr>
<td>A23</td>
<td>Input #23 (5HG)</td>
<td>B22</td>
</tr>
<tr>
<td>A24</td>
<td>Input #27 (5HG)</td>
<td>B23</td>
</tr>
<tr>
<td>A25</td>
<td>WB2 VS+</td>
<td>B24</td>
</tr>
<tr>
<td>A26</td>
<td>Sensor +5v</td>
<td>B25</td>
</tr>
<tr>
<td>A27</td>
<td>Input #7 (52THG)</td>
<td>B26</td>
</tr>
<tr>
<td>A28</td>
<td>Input #11 (52THG)</td>
<td></td>
</tr>
<tr>
<td>A29</td>
<td>Input #15 (5G)</td>
<td></td>
</tr>
<tr>
<td>A30</td>
<td>Input #19 (FS)</td>
<td></td>
</tr>
<tr>
<td>A31</td>
<td>Input #22 (5HG)</td>
<td></td>
</tr>
<tr>
<td>A32</td>
<td>Input #32 (5HG)</td>
<td></td>
</tr>
<tr>
<td>A33</td>
<td>WB2 IP+</td>
<td></td>
</tr>
<tr>
<td>A34</td>
<td>WB2 HTR +</td>
<td></td>
</tr>
</tbody>
</table>
3.0 Main Harness

The following overviews all the connections on the “Main Harness”. The Main Harness is the primary harness that supports all the primary engine sensors, fuel and ignition for 8 cylinder engines, the #1 wideband oxygen sensor, and the first four programmable input and output channels. There are two connectors for this harness designated as “P1A” (pin designations below that start with an A) and “P1B” (pin designations below that start with a B).

The following descriptions indicate the name of the item and the name as labeled on the harness is shown in parenthesis. The pinout for the ECU is then shown. If the wires are terminated into the same connector on every type of main harness, the connector pinout is given as well. If the connector may vary by application, such as a TPS or IAC, the connector pinout is not given. To see the connector pinout for a specific application, locate the wiring diagram themselves contained in the WIRING APPENDIX, located at the end of this manual.

4.0 Primary Sensors

4.1 Throttle Position Sensor (TPS)

Holley EFI systems work with any 0-5V throttle position sensors.

A5 – TPS Signal
A18 – Sensor Ground
A26 – Sensor +5V Reference Out

<table>
<thead>
<tr>
<th>P3 Pin</th>
<th>Function</th>
<th>P4 Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Sensor Ground</td>
<td>B1</td>
<td>Output #30 (G P-)</td>
</tr>
<tr>
<td>B2</td>
<td>Input #31 (5)</td>
<td>B2</td>
<td>Output #29 (G P-)</td>
</tr>
<tr>
<td>B3</td>
<td>Input #32 (5)</td>
<td>B3</td>
<td>Output #36 (H P+)</td>
</tr>
<tr>
<td>B4</td>
<td>DBW #2 A Out</td>
<td>B4</td>
<td>Output #35 (H P+)</td>
</tr>
<tr>
<td>B5</td>
<td>DBW #2 B Out</td>
<td>B5</td>
<td>Output #32 (H P+)</td>
</tr>
<tr>
<td>B6</td>
<td>DBW #1 A Output</td>
<td>B6</td>
<td>Output #34 (H P+)</td>
</tr>
<tr>
<td>B7</td>
<td>DBW #1 B Output</td>
<td>B7</td>
<td>Output #28 (G P-)</td>
</tr>
<tr>
<td>B8</td>
<td>Sensor +5v</td>
<td>B8</td>
<td>Input #46 (5HG)</td>
</tr>
<tr>
<td>B9</td>
<td>Input #30 (5)</td>
<td>B9</td>
<td>Input #45 (5HG)</td>
</tr>
<tr>
<td>B10</td>
<td>Output #24 (H P+)</td>
<td>B10</td>
<td>Input #47 (5HG)</td>
</tr>
<tr>
<td>B11</td>
<td>Output #23 (H P+)</td>
<td>B11</td>
<td>Output #31 (H P+)</td>
</tr>
<tr>
<td>B12</td>
<td>Output #22 (G P-)</td>
<td>B12</td>
<td>Output #33 (H P+)</td>
</tr>
<tr>
<td>B13</td>
<td>Output #21 (G P-)</td>
<td>B13</td>
<td>Output #27 (G P-)</td>
</tr>
<tr>
<td>B14</td>
<td>CAN2 Lo</td>
<td>B14</td>
<td>Sensor Ground</td>
</tr>
<tr>
<td>B15</td>
<td>Input #29 (5)</td>
<td>B15</td>
<td>Input #42 (5HG)</td>
</tr>
<tr>
<td>B16</td>
<td>Sensor Ground</td>
<td>B16</td>
<td>Input #48 (5HG)</td>
</tr>
<tr>
<td>B17</td>
<td>Global Folder Config Select Switch</td>
<td>B17</td>
<td>Input #37 (52THG)</td>
</tr>
<tr>
<td>B18</td>
<td>Input #36 (52THG)</td>
<td>B18</td>
<td>Input #39 (FS)</td>
</tr>
<tr>
<td>B19</td>
<td>Output #25 (H P+)</td>
<td>B19</td>
<td>Input #40 (FS)</td>
</tr>
<tr>
<td>B20</td>
<td>CAN2 Hi</td>
<td>B20</td>
<td>Sensor +5v</td>
</tr>
<tr>
<td>B21</td>
<td>Input #28 (5)</td>
<td>B21</td>
<td>Input #41 (5HG)</td>
</tr>
<tr>
<td>B22</td>
<td>Sensor +5v</td>
<td>B22</td>
<td>Input #43 (5HG)</td>
</tr>
<tr>
<td>B23</td>
<td>Input #33 (5)</td>
<td>B23</td>
<td>Input #44 (5HG)</td>
</tr>
<tr>
<td>B24</td>
<td>Input #35 (52THG)</td>
<td>B24</td>
<td>Input #49 (5G)</td>
</tr>
<tr>
<td>B25</td>
<td>Input #34 (5)</td>
<td>B25</td>
<td>Input #38 (52THG)</td>
</tr>
<tr>
<td>B26</td>
<td>Output #26 (H P+)</td>
<td>B26</td>
<td>Input #50 (5G)</td>
</tr>
</tbody>
</table>
4.2 Manifold Air Pressure Sensor (MAP)

Holley EFI systems work with 1, 2, 3, 4, or 5 Bar MAP sensors. Make sure to select the proper sensor used in the software.

A18 – Sensor Ground
A23 – MAP Sensor Signal
A26 – Sensor +5v Reference Out

4.3 Coolant Temperature Sensor (CTS)

Holley EFI systems work with any 2 wire thermistor style coolant temperature sensors. Make sure to select the proper sensor in the software.

A18 – Sensor Ground
A19 – Coolant Temp In

4.4 Manifold Air Temperature Sensor (MAT)

Holley EFI systems work with any 2 wire thermistor style manifold air temperature sensors. Make sure to select the proper sensor in the software.

A11 – Manifold Air Temp In
A18 – Sensor Ground

4.5 Knock Sensor (Knock)

Holley EFI systems work with either a one wire or two wire knock sensor. Application specific harnesses will have the correct knock sensor connections installed on the harness. A Universal harness comes with a 3 pin metripak connector. If a knock sensor is added, it should be connected into this connector

A21 – Knock Sensor #2 Input (Pin A)
A29 – Knock Sensor #1 Input (Pin B)
A18 – Sensor Ground (Pin C)

4.6 Wide Band Oxygen Sensor (WB02)

Holley EFI systems can work with either a Bosch (PN 554-101) or NTK (PN 554-100) wide band oxygen sensor. These sensors must be purchased from Holley as they are calibrated specifically for use with Holley EFI systems.

A34 – WB1 HTR+ (Pin A)
A9 – WB1 HTR - (Pin B)
A16 – WB1 COMPR1 (Pin C)
A7 – WB1 CCOMPR2 (Pin D)
A17 – WB1 VS-/IP- (Pin E)
A33 – WB1 IP+ (Pin F)
A25 – WB1 VS+ (Pin G)
A8 – WB1 Shield (Pin H)

4.7 Fuel Pressure (Fuel)

A fuel pressure input is a standard feature on Holley EFI. A connector is installed that is plug-and-play with Holley 100 PSI pressure transducer PN 554-102. A different 0-5V transducer can be used, but the calibration must be set up as a custom sensor in the software. If these are not connected to a pressure transducer, the Fuel and Oil Pressure will read “LOW Err” in the data monitor. This will not cause any issues.

A18 – Sensor Ground (Pin A)
A26 – Sensor +5V Reference Out (Pin B)
A31 – Fuel Pressure Signal (Pin C)
4.8 Oil Pressure (Oil)

An oil pressure input is a standard feature on Holley EFI. A connector is installed that is plug-and-play with Holley 100 PSI pressure transducer PN 554-102. A different 0-5V transducer can be used, but the calibration must be set up as a custom sensor in the software. If these are not connected to a pressure transducer, the Fuel and Oil Pressure will read “LOW Err” in the data monitor. This will not cause any issues.

A18 – Sensor Ground (Pin A)
A26 – Sensor +5V Reference Out (Pin B)
A20 – Fuel Pressure Signal (Pin C)

4.9 CANbus (CAN)

All harnesses have a CANbus communications connector. This is used to communicate with CANbus devices, such as the Avenger Handheld tuning module or the 5.7” Touch Screen LCD. If these devices or any other CANbus device is not being used, there is no need to do anything with this connector.

A24 – CAN Lo (Pin B)
A32 – CAN Hi (Pin A)

5.0 Primary Outputs

5.1 Idle Air Control (IAC)

The terminated IAC connector is for a 4 wire stepper type IAC. A 2 wire PWM (Pulse Width Modulated) IAC can be used, see section 9.2. The following shows the outputs for a stepper IAC.

B1 – IAC A Lo
B2 – IAC A Hi
B8 – IAC B Lo
B9 – IAC B Hi

5.2 Fuel Injector Outputs (Injectors)

All terminated harnesses have a fuel injector connector. Various fuel injector harnesses plug into this connector. It is essential these harnesses are used so that injector firing sequence is maintained.

Note that for engines with different firing orders, you do NOT change these pins. The engine’s firing order is input in the software itself. Pin’s A-H are routed to the cylinder number designation for the engine (i.e. A goes to cylinder #1, B goes to cylinder #2, etc). V8 harnesses offered by Holley are labeled for GM, Ford, and Chrysler engines.

B19 – Injector A (Pin A)
B26 – Injector B (Pin B)
B25 – Injector C (Pin C)
B13 – Injector D (Pin D)
B7 – Injector E (Pin E)
B4 – Injector F (Pin F)
B5 – Injector G (Pin G)
B6 – Injector H (Pin H)
+12V Power – (Pins J/K)
5.3 Ignition Adapter (Ignition)

The Ignition Adapter connector contains all the wires needed to connect to adapter harnesses offered by Holley for various ignition systems and crank and cam sensor. The only ignition related wiring that is NOT contained on this connector is individual coil driver outputs for DIS applications.

The adapter is pinned as follows:

A30 – Crank signal Input – Both digital and inductive (proper type must be selected in the software) (Pin A)
A22 – Cam signal Input / Ignition Bypass Output – Both digital and inductive (proper type must be selected in the software) NOTE: If using a computer-controlled GM HEI Distributor, this pin will serve as the ignition bypass output (Pin B)
A14 – IPU Ground (Pin C)
Chassis Ground – (Pin D)
A10 – Switched +12v (Pin E)
A27 – NOT USED (Pin F)
A14 – IPU Ground (Pin G)
A28 – EST/Spout Output (Pin H)
A14 – Shield Ground (Pin J)
A14 - Shield Ground (Pin K)

NOTE: The crank and cam input wiring in both the main harness and adapter harnesses use a shielded/grounded cable. The shield is grounded at the ECU end. You do not ground both end of shielded/grounded cable. It is always recommended to use shield/grounded cable to protect the integrity of the crank or cam sensor input signals. This is especially important when using a magnetic pickup. A hall effect sensor is much less susceptible to noise interference and is always the recommended sensor type to use.

Holley offers the following ignition adapter harnesses.

271R1012A – “Tach Out” – This adapter connects into the “Tach Out” on a CD ignition box when the ECU is NOT controlling ignition timing. This adapter is included with all HP and Avenger TBI and Multiport Fuel Injection systems.

558-303 – Magnetic Pickup Harness – Intended for magnetic pickups. Either crank trigger or distributor mounted - Does not contain cam sync wiring.

558-304 – HEI – Connects to a small cap GM HEI computer controlled distributor

558-305 – Ford TFI – Connects to a Ford TFI Distributor.

558-306 – Universal Unterminated Ignition Harness – Contains ignition adapter connector and all wiring to connect to any crank and cam sensors (pins A-K). Also, contains shielded/grounded cable for crank and cam sensor inputs. The user must supply terminals and connectors to plug into their chosen sensors.

NOTE: See section 8.0 for diagrams on wiring most ignition systems.

6.0 Loose Wires

The following loose wires in the main wiring harness should be connected as follows on all systems:

12V Switched – Color = Red/White – Should be connected to a clean +12 volt power source. Power source should only be active when the ignition is on. Make sure source has power when engine is cranking as well. Not all sources apply power when the ignition switch is in “cranking” position.

12V Battery – Color = Red – Should be connected directly to the battery. There is a fuse holder attached that should contain a 20A rated fuse. This powers the fuel pump and fuel injectors.

12V Fuel Pump – Color = Green - Used to directly power a fuel pump (+12 volt). Fully terminated harnesses utilize a relay to supply this power. 14 gauge wire is used. Due to this, it is not recommended for pumps that draw over 10-12 Amps to use this wire. For high current pumps, use this wire to trigger a separate relay and use larger gauge wire to feed the pump - 10 gauge is recommended.

Points Output – Color = White – Used to trigger a CD ignition box. See the ignition wiring section for detailed wiring.

Ignition/DIS Chassis Ground – Color = Black – Connect to a ground point that has excellent connectivity with both the engine and the battery.

“Coil –” – Color = Yellow – Used for an RPM input signal when not controlling timing and NOT running a Capacitive Discharge (MSD) ignition system. See the ignition wiring section 8.0 for detailed wiring. WARNING! Connecting this wire to the coil of a CD ignition will damage the ECU.
7.0 Main Power

7.1 Overview

Holley HP and Dominator ECU’s use the same main power cable. These wires should be run directly to the battery. 10 gauge wire is used. The harness comes with a 40 Amp fuse pre-installed. Do not substitute smaller gauge wires.

8.0 Ignition System Wiring

Both the HP and Dominator Systems support a wide variety of ignition systems. The following schematics show how to wire the most typical systems.

8.1 LSx Engines with 24x Crankshaft Reluctor Wheel

These engines include LS1, LS6, a few early LS2 engines and some truck engines. Harness P/N 558-102 is “plug and play” for the Camaro/Corvette applications that have 24x crankshaft relocator wheels and 1x camshaft trigger wheels. The harness is designed with the camshaft sensor located at the back of the engine. The early 24x LS2 engines may have it mounted in the front, in which case the cam sensor wire will have to be extended. The harness plugs into the factory GM coils harnesses. No additional harnesses are needed other than an injector harness to run the engine (unless drive by wire or transmission control is desired). For standard Bosch style injector connectors, PN 558-200 can be used. For EV6 style injectors, use injector harness PN 558-201.

NOTE: On GM LSx engines, always install the black “ignition ground” wire in the harness to the engine block or cylinder head.

8.2 LSx Engines with 58x Crankshaft Reluctor Wheel

These include most LS2, LS7, LS3, and some truck engines. Harness P/N 558-103 is “plug and play” for most 58x crankshaft relocator wheels and 4x camshaft trigger wheels. The harness plugs into the factory GM coils harnesses. No additional harnesses are needed other than an injector harness to run the engine (unless drive by wire or transmission control is desired). For standard Bosch style injector connectors, PN 558-200 can be used. For EV6 style injectors, use injector harness PN 558-201.

NOTE: On GM LSx engines, always install the black “ignition ground” wire in the harness to the engine block or cylinder head.
8.3 Small Cap Computer Controlled GM HEI

To connect to a small cap computer controlled GM HEI, ignition adapter harness PN 558-304 is required. The following diagrams overview how to wire with and without a CD ignition box.

Figure 3

Figure 4

8.4 Ford TFI

To connect to a Ford TFI ignition module, ignition adapter harness PN 558-305 is required. Note that the system is designed only for distributors used for sequentially injected Ford engines such as 5.0L Mustangs. A very small amount of TFI style distributors around 1985 did not have a cam sync ident in the pickup. The following diagrams overviews how to wire a TFI distributor with and without a CD ignition box.
HOLLEY EFI TO FORD TFI IGNITION (SEQUENTIAL) - USING FORD COMPUTER-CONTROLLED DISTRIBUTOR, TFI MODULE (ECU CONTROLLING IGNITION TIMING)

Figure 5
HOLLEY EFI TO AFTERMARKET IGNITION - USING FORD COMPUTER-CONTROLLED TFI DISTRIBUTOR (SEQUENTIAL), TFI MODULE (ECU CONTROLLING IGNITION TIMING)

Figure 6
8.5 NON-ECU Controlled Timing Applications (ex. GM Non-ECU Controlled Large Cap HEI)

To connect to a distributor that has mechanical advance and is not controlled by the ECU (ex. GM large cap HEI non-computer controlled distributor), refer to the following diagrams.

- If NOT using a CD ignition box, connect the loose YELLOW (NOT yellow/black wire) in the harness to the negative side of the ignition coil.

- If using a CD ignition box, connect the purple crank input wire located in the ignition adapter harness to the "tach out" in the ignition box. This wire is located in Pin A of the 10 pin ignition adapter in the EFI harness (Do NOT use the purple wire in pin B – this is for the camshaft sensor input). The following shows three options in order of preference:

 1) Most kits come with a 10 pin ignition adapter harness with a single YELLOW/BLACK wire that directly connects to the ignition adapter on the main harness. If you have this adapter, use it to connect the YELLOW/BLACK wire into the tach output of the CD ignition box.

 2) If your kit contains an HEI distributor ignition adapter harness (4 wires), you can cut and splice into the YELLOW/BLACK wire in it. This saves you from having to modify the main harness.

 3) If you have no ignition adapter harness, you can splice into the purple wire in the main harness.

If any splicing is done, make 100% certain that this is a very solid connection. Solder and heat shrink is highly recommended. This supplies the engine speed signal to the ECU and if the connection is not solid, the engine will not run properly.

![Diagram of Holley EFI to GM HEI - Using Mechanical and Vacuum Advance 4-Pin Module Distributor (ECU "NOT" Controlling Ignition Timing)](image)

Figure 7
HOLLEY EFI TO AFTERMARKET IGNITION - USING MAGNETIC PICK-UP DISTRIBUTOR
(ECU "NOT" CONTROLLING IGNITION TIMING)

DISTRIBUTOR TYPE	POSITIVE (+)	NEGATIVE (-)
Holley | RED | BLACK
Mopar | ORANGE | VIOLET
Mallory Comp. | ORANGE | VIOLET
Summit (module removed) | WHITE | GREEN
Ford Stanpark (module removed) | ORANGE | VIOLET
Chrysler Electronic (module removed) | ORANGE | BLACK

NOTE: KEEP THESE WIRING AWAY FROM ALL OTHERS TO AVOID INTERFERENCE

WHITE (NOT USED)
VIOLET (+) AND GREEN (-)
ORANGE (+) AND BLACK (-)
RED (+) SWITCHED POWER
GREEN (TO CHASSIS GROUND)

HEAVY RED (+)
HEAVY BLACK (-)
BROWN (CRANE; GREEN)

CD COIL

Connect YELLOW/BLACK wire on ignition adapter to CD box TACH OUT or splice into purple wire on main harness (PIN A on ignition adapter).

A - CRANK INPUT
B - CAM INPUT / BYPASS OUT
C - IPU GROUND
D - CHASSIS GROUND
E - SWITCHED +12V
F - NOT USED
G - IPU GROUND
H - EGT/SPROUT OUT
J - SHIELD (CAM)
K - SHIELD (CRANK)

Figure 8
The follow diagrams are for running a magnetic pickup, either a crank trigger or a distributor. To run just a magnetic pickup crank input and no camshaft input, PN 558-303 should be purchased. If a cam sync input will be used as well, it is recommended to use PN 558-306 which will contain wiring for both the crank and cam sensor inputs. It is critical that properly installed shielded and grounded cable is used when using a magnetic pickup, or it is likely that EMI will disturb the crankshaft signal. Both PN 558-303 and 558-306 come with the proper cabling. It must be installed properly as well. Make sure that the shield is properly grounded which requires it being grounded at the ECU with that ground maintained through the ignition adapter connection.

Note: The user must supply the proper terminals/connectors for the crank and cam sensors they are using.

HOLLEY EFI TO AFTERMARKET IGNITION - USING MAGNETIC PICK-UP CRANK TRIGGER (ECU CONTROLLING IGNITION TIMING)

<table>
<thead>
<tr>
<th>CRANK TRIGGER TYPE</th>
<th>POSITIVE (+)</th>
<th>NEGATIVE (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holley Laserstrike (Early)</td>
<td>Black</td>
<td>White</td>
</tr>
<tr>
<td>Holley Laserstrike (Late)</td>
<td>Black</td>
<td>White</td>
</tr>
<tr>
<td>Red (Early)</td>
<td>Orange</td>
<td>Black</td>
</tr>
<tr>
<td>Red (Late)</td>
<td>Violet</td>
<td>Green</td>
</tr>
<tr>
<td>Firepower</td>
<td>Grey or Orange</td>
<td>Black</td>
</tr>
<tr>
<td>Moroso</td>
<td>Black</td>
<td>White</td>
</tr>
</tbody>
</table>

Figure 9
8.7 Magnetic Cam Pickup

The following diagram is to wire a magnetic cam sync signal. It utilizes the shielded/grounded cabling found in PN 558-306. It is critical that properly installed shielded and grounded cable is used when using a magnetic pickup, or it is likely that EMI will disturb the camshaft signal.

Figure 10
8.8 Hall Effect Crank Pickup

The following diagrams are for running a hall effect pickup, either a crank trigger or a distributor. It is recommended to use PN 558-306 which will contain wiring for both the crank and cam sensor inputs. It is important that properly installed shielded and grounded cable is used when using a hall effect input. PN 558-306 comes with the proper cabling. It must be installed properly as well. Make sure that the shield is properly grounded which requires it being grounded at the ECU with that ground maintained through the ignition adapter connection.

HOLLEY EFI TO AFTERMARKET IGNITION - USING HALL EFFECT PICK-UP CRANK TRIGGER (ECU CONTROLLING IGNITION TIMING)
8.9 Hall Effect Cam Pickup

The following diagram is to wire a hall effect cam sync signal. It utilizes the shielded/grounded cabling found in PN 558-306. It is desirable to use a properly installed shielded and grounded cable so that EMI will not disturb the camshaft signal.

![Hall Effect Cam Sync Wiring Diagram](image)

8.10 Holley Distributorless Ignition System (DIS)

Holley DIS can be retrofitted onto any engine. It is a waste-spark type system which means that one twin-tower coil feeds two cylinders that fire 360 degrees apart. These coils provide a high level of spark energy to feed high powered nitrous and forced induction engines. A cam sync is not required when using a Holley 60-2 crank pickup wheel, although one is required for sequential fuel control and individual cylinder fuel and spark timing.

NOTE: Use of Individual Cylinder Timing when using Holley DIS: At the present time, the Individual Cylinder Timing function, when used with waste fire ignition systems, such as the Holley DIS, does not have full individual tuning capabilities. A timing retard is “shared” between both cylinders attached to a coil. For example, if cylinders 1 and 6 are attached to a coil, and a timing retard of 2 degrees is commanded for cylinder #1, cylinder #6 will have a 2 degree retard as well. The retard value for the cylinder with the most amount of retard requested, will be used for both.

The figures below show how to wire the coils for 4, 6, and 8 cylinder applications. An example is given for standard firing order Small and Big Block Chevy engines, as well.

Holley PN’s 556-100, 101, and 105 come with the following wiring harnesses:

- **Main Power Cable** – The main power is a fused 14 ga cable that should go directly to battery power. It then splices into the individual coil harnesses.

- **Cam/Crank Sensor Harness** – The cam/crank sensor harness is a fully terminated ignition adapter that connects directly to the Holley crank sensor supplied in the kit. It also includes a terminated cam sync connector. This connector plugs into the GM sync pulse distributor used on certain 1990’s big block vehicles, AC Delco PN 213-350. This distributor was reproduced and is sold by EFI Connection (www.eficonnection.com) for a very reasonable price. This distributor, which can be used on Small or Big Block Chevy standard deck height engines, serves the purpose as an oil pump drive and cam sync signal. It is very low profile.

- **Coil A, B, C, D Harnesses** – There are 4 harness “pigtails” for each coil. Each has a different wire color for each individual coil trigger. The rest of the wires are tied together as shown in the diagram. The following overviews each coil pin:

 A – Chassis ground. Tie these together. If connecting all together into another wire, make sure this wire is at least a 14 gauge wire.

 B – Trigger Ground. These wires need to be connected and run back to the ECU to pin B14. They can be tied together near the coils or back at the ECU. It is a low current line.

 C – Coil Trigger. This is the individual trigger from the ECU to each coil. Wire per the “ECU to Coil Wiring” instructions below.

 D – 12v Battery. Constant 12v power supplied from the battery. Tie together and use the supplied fused, 14ga wire to run to battery power.
NOTE: Keep this wiring separated from the spark plug ignition wires. Do not run these wires through or in parallel with the spark plug wires.

Coil and Plug Wiring

It is imperative that the wiring of the coils and spark plug wiring is done correctly. If it is not, a cylinder will fire at the incorrect time and it is likely that the starter, flex plate, and possibly other components will be damaged!

ECU to Coil Wiring

Use Figures 13 through 16 below as a worksheet to fill out the proper wiring for the coils and ECU. Perform the following steps on this worksheet:

1) Enter the engine firing order as indicated in the yellow boxes at the top. This will be used as a "cross reference" chart.
2) In all the yellow boxes through the diagram, enter the corresponding engine cylinder for each letter based on the cross reference chart.
3) Using the "ECU Pinout" diagram, enter the proper ECU pin in the orange boxes based on the cylinder number entered for each.
4) You can now wire based on this chart. Insert the ECU coil trigger pins into the proper locations on the P1B ECU Connector.

CAUTION: If the coils are not wired in the correct sequence, if spark plugs are not routed to the correct coils, OR if the firing order is not entered into the software correctly, the wrong cylinder WILL be fired. This will likely damage the starter, flex plate or worse. Before starting an engine, it is highly advised to disconnect the fuel injectors and put a timing light on each plug wire to ensure it is firing at the correct crank angle. Double-check your wiring!
HOLLEY DISTRIBUTORLESS IGNITION WIRING - 8 CYLINDER

EXAMPLE: SMALL/BIG BLOCK CHEVY WITH STANDARD FIRING ORDER

ECU P1B CONNECTOR

<table>
<thead>
<tr>
<th>PIN #</th>
<th>DESCRIPTION</th>
<th>WIRE COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14</td>
<td>TRIGGER GROUND</td>
<td>BLACK/YELLOW</td>
</tr>
<tr>
<td>B21</td>
<td>EST "A" (1)</td>
<td>GREEN/WHITE</td>
</tr>
<tr>
<td>B18</td>
<td>EST "B" (8)</td>
<td>ORANGE/WHITE</td>
</tr>
<tr>
<td>B16</td>
<td>EST "C" (4)</td>
<td>YELLOW/WHITE</td>
</tr>
<tr>
<td>B22</td>
<td>EST "D" (3)</td>
<td>GREY/WHITE</td>
</tr>
</tbody>
</table>

ECU PINOUT

<table>
<thead>
<tr>
<th>PIN #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B15</td>
<td>EST 2 (CYLINDER #2)</td>
</tr>
<tr>
<td>B16</td>
<td>EST 4 (CYLINDER #4)</td>
</tr>
<tr>
<td>B17</td>
<td>EST 6 (CYLINDER #6)</td>
</tr>
<tr>
<td>B21</td>
<td>EST 1 (CYLINDER #1)</td>
</tr>
<tr>
<td>B22</td>
<td>EST 3 (CYLINDER #3)</td>
</tr>
<tr>
<td>B23</td>
<td>EST 5 (CYLINDER #5)</td>
</tr>
<tr>
<td>B24</td>
<td>EST 7 (CYLINDER #7)</td>
</tr>
</tbody>
</table>

*REPLACE A,B,C,D,E,F,G, & H WITH THE CORRESPONDING CYLINDER # IN YELLOW BOXES.
**ENTER PROPER ECU PINOUT IN ORANGE BOXES USING THE "ECU PINOUT" CHART.
ECU PINOUT

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PIN #</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST 2 (CYLINDER #2)</td>
<td>B15</td>
</tr>
<tr>
<td>EST 4 (CYLINDER #4)</td>
<td>B16</td>
</tr>
<tr>
<td>EST 6 (CYLINDER #6)</td>
<td>B17</td>
</tr>
<tr>
<td>EST 8 (CYLINDER #8)</td>
<td>B18</td>
</tr>
<tr>
<td>EST 1 (CYLINDER #1)</td>
<td>B21</td>
</tr>
<tr>
<td>EST 3 (CYLINDER #3)</td>
<td>B22</td>
</tr>
<tr>
<td>EST 5 (CYLINDER #5)</td>
<td>B23</td>
</tr>
<tr>
<td>EST 7 (CYLINDER #7)</td>
<td>B24</td>
</tr>
</tbody>
</table>

ECU P1B CONNECTOR

<table>
<thead>
<tr>
<th>PIN #</th>
<th>DESCRIPTION</th>
<th>WIRE COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14</td>
<td>TRIGGER GROUND</td>
<td>BLACK/YELLOW</td>
</tr>
<tr>
<td></td>
<td>EST "A"</td>
<td>GREEN/WHITE</td>
</tr>
<tr>
<td></td>
<td>EST "B"</td>
<td>ORANGE/WHITE</td>
</tr>
<tr>
<td></td>
<td>EST "C"</td>
<td>YELLOW/WHITE</td>
</tr>
</tbody>
</table>

FIRING ORDER:

A B C D E F

* Replace *A, B, C, D, E, F, G, & H with the corresponding cylinder # in yellow boxes.

* Enter proper ECU pinout in orange boxes using the "ECU pinout" chart.
HOLLEY DISTRIBUTORLESS IGNITION WIRING - 4 CYLINDER

*FIRING ORDER:

A B C D

ENTER YOUR ENGINE'S FIRING ORDER HERE!

ECU P1B CONNECTOR

**PIN # DESCRIPTION WIRE COLOR
B14 TRIGGER GROUND BLACK/YELLOW
 EST "A" GREENWHITE
 EST "B" ORANGE/WHITE

**ECU PINOUT

DESCRIPTION PIN #
EST 2 (CYLINDER 2) B15
EST 4 (CYLINDER 4) B16
EST 6 (CYLINDER 6) B17
EST 8 (CYLINDER 8) B18
EST 1 (CYLINDER 1) B21
EST 3 (CYLINDER 3) B22
EST 5 (CYLINDER 5) B23
EST 7 (CYLINDER 7) B24

NOTE: Tie to 14 ga power cable.

*REPLACE 'A,B,C,D,E,F,G, & H' WITH THE CORRESPONDING CYLINDER # IN YELLOW BOXES.
**ENTER PROPER ECU PINOUT IN ORANGE BOXES USING THE "ECU PINOUT" CHART.
9.0 Programmable Inputs and Outputs

Programmable input and outputs are intended to be any input or output that is created by the user when a Global Folder is configured. Once configured, they must be assigned to a specific pin location on the Pin Map, and then physically wired per the assigned location.

NOTE 1: As a standard wiring practice, DO NOT wire any input or output to a source that draws more than 2 amps. This is especially true when connecting to something with a “coil”, such as any type of solenoid. If the device exceeds 2 amps, you should connect the input or output to the trigger side of the relay used to power the device, not directly to the device. Note that this 2 amp limit pertains to inputs as well (not just outputs). When de-powered, some solenoids create a large fly-back voltage that is fed directly back into an input trigger of the ECU, if that input is directly connected to the solenoid.

9.1 Inputs

There are seven types of inputs that can be configured. The following lists them and reviews wiring recommendations. The designation on the Pin Map (Inputs) is given first, then a description.

1. “H” – Switched 12v or “High Side” input – This input will be triggered when system voltage is applied. Minimum triggering voltage is 4.5v. Do not exceed 24v.

Wiring: Connect up to any voltage source that is desired to trigger this input. See NOTE 1 above.

2. “G” – Switched Ground or “Low Side” input – This input will be triggered when a ground is applied.

Wiring: Connect up to any ground source that is desired to trigger this input. See NOTE 1 above.

3. “5” – 0-5 volt sensor input – Any 0-5 volt sensor input such as a TPS, MAP sensor, pressure transducer, and many others.

Wiring: Wire the signal wire from the 0-5v sensor used into the appropriate pin. Any 0-5v sensor requires a +5v reference voltage and a sensor ground. Each HEFI connector that has 0-5v inputs has its own +5v reference voltage output and sensor ground. These need to be properly wired to each 0-5v sensor used. The following outlines the sensor +5v reference voltage and sensor ground pins:

<table>
<thead>
<tr>
<th>Connector</th>
<th>Sensor +5v Reference Voltage Pin</th>
<th>Sensor Ground Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1A</td>
<td>A26</td>
<td>A18</td>
</tr>
<tr>
<td>P2A</td>
<td>A26</td>
<td>A18</td>
</tr>
<tr>
<td>P3</td>
<td>B8 and B22</td>
<td>B1 and B16</td>
</tr>
<tr>
<td>P4</td>
<td>B20</td>
<td>B14</td>
</tr>
</tbody>
</table>

It is acceptable to have multiple sensors share the same +5v and ground reference lines. Be sure to solder, heat shrink, etc. wires properly as poor connections will cause for inaccurate or faulty sensor readings.

Do not use +5v reference or ground sources from other controllers or power supplies to support the sensor, or sensor accuracy may be compromised.

4. “2” – 0-20 volt sensor input – Any 0-20 volt sensor input

Wiring: Connect to desired voltage input.

5. “T” – Thermistor temperature input – Most coolant and air temperature sensors are a 2 wire “thermistor” design.

Wiring: Connect to one side of the thermistor device. Connect the other side of the thermistor device to a “Sensor Ground” input pin to the ECU (same pins for a 0-5v sensor). These pins are as follows:

<table>
<thead>
<tr>
<th>Connector</th>
<th>Sensor Ground Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1A</td>
<td>A18</td>
</tr>
<tr>
<td>P2A</td>
<td>A18</td>
</tr>
<tr>
<td>P3</td>
<td>B1 and B16</td>
</tr>
<tr>
<td>P4</td>
<td>B14</td>
</tr>
</tbody>
</table>

6. “F” – Frequency or a Digital Speed Input – Designed for a digital voltage input from a speed/rotation sensor. A hall effect sensor is the common sensor used. Voltage range can be 4.5 to 24 volts.

Wiring: A hall effect sensor has 3 wires: Power, Ground, and Signal. Most sensors can be supplied with battery voltage (12v), a few require a 5 volt reference. Check with the specifications of your specific sensor. Although not usually needed with a hall effect sensor, it is always advised to use a shielded/grounded cable to wire them (all three wires can be shielded). The following is advised when wiring a hall effect sensor.
Signal – Run the sensor signal wire into the Pin Mapped channel

Power – Either supply with clean switched power, or if it is not used for another purpose, you can power from Pin P1B-B20 which is a clean 12v power source. If the sensor requires 5 volts, use a +5v reference line.

Ground – It is best to connect to an IPU (Inductive/Magnetic Pickup) or Sensor Ground. The following pins are IPU grounds:

<table>
<thead>
<tr>
<th>Connector</th>
<th>Sensor Ground Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1A</td>
<td>A14</td>
</tr>
<tr>
<td>P2A</td>
<td>A22</td>
</tr>
</tbody>
</table>

Shield Wire – If using shielded/grounded cable, connect the shield ground wire to the ECU only. It is best to connect it to an IPU ground.

7. “S” – Inductive Speed Input – Designed for an A/C voltage input from a speed/rotation sensor. A magnetic sensor is the common sensor used. The minimum arming voltage is 50 mV.

Wiring: It is highly advised to always use a shielded/grounded cable for any inductive signal. They are very susceptible to noise. An inductive sensor has two wires - a “positive” and “negative”. Connect the positive lead to the “S” input pin that was Pin Mapped. Connect the negative side to an IPU ground. These are as follow:

<table>
<thead>
<tr>
<th>Connector</th>
<th>Sensor Ground Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1A</td>
<td>A14</td>
</tr>
<tr>
<td>P2A</td>
<td>A22</td>
</tr>
</tbody>
</table>

9.2 Outputs

All PWM (Pulse Width Modulated) and switched outputs are rated at a maximum of 2A. If a device will draw more than 2A, some type or relay must be used. If the output is PWM, do not use a “switching” relay, but rather a solid state type relay designed to be pulse width modulated.

There are four types of outputs that can be configured. The following lists them and reviews wiring recommendations. The designation on the Pin Map (Outputs) is given first, then a description.

1. “H” – Switched 12v or “High Side” output – will output system voltage level.

Wiring: Connect the pin to the device to be triggered. See NOTE 1 above.

2. “G” – Ground or “Low Side” output – will output a ground trigger.

Wiring: Connect the pin to the device to be triggered. See NOTE 1 above.

3. “P+” - 12v Pulse Width Modulated output – Outputs a high side pulse width modulated output to control items such as a progressive nitrous solenoid or a PWM IAC – will output system voltage level. See NOTE 1 above.

Wiring: Connect the pin to the device to be triggered. A PWM device has 2 wires, connector the other side of the device to ground.

4. “P-“ – Ground Pulse Width Modulated output – Outputs a low side pulse width modulated output to control items such as a progressive nitrous solenoid or a PWM IAC. See NOTE 1 above.

Wiring: Connect the pin to the device to be triggered. A PWM device has 2 wires, connector the other side of the device to a voltage source.

10.0 Nitrous System Wiring

The following reviews how to properly wire a nitrous oxide system being controlled by a HP or Dominator ECU.

Required Wiring

An enable/arming input is required. It can be a ground or +12v input (make sure to configure in the software). The primary activation is the TPS and Engine Speed, both of which are existing inputs.

GPO’s

General Purpose Outputs (GPO’s), which are optional, can be configured in the software. They are a +12v or ground output that can be used to trigger another device (ignition box timing retard, etc).

Input #1, #2, #3 – Three additional inputs can be wired in order to activate or deactivate nitrous. They work in conjunction with the TPS
and Engine Speed activation settings. These three inputs are optional. An example would be to enable one off the trans-brake such that nitrous is NOT activated when the trans-brake is applied. They can be configured as a ground or +12v input in the software.

Non-Progressive Wiring – Any non-progressive stage of nitrous can be wired with a conventional switching relay. The ECU will trigger the relay to activate the stage.

Progressive Wiring – When using progressive control, PN 554-111 must be used as a high current solenoid driver that the ECU controls. A regular switching relay should never be used for progressive nitrous operation (other than for supplying constant power, it should never be “pulsed”). Figure 17 shows the proper wiring for a single stage. For additional stages, additional driver modules are required. **Note:** PN 554-111 CAN be used for non-progressive stage, if desired, in lieu of a standard relay.

554-111 Software Configuration – The 554-111 solenoid driver trigger (pin 2) **MUST** be configured as a “PWM -” output in the software (the driver is ground triggered). Do not set it up as any other type or damage or unintended solenoid activation may result.

NOTE: NEVER have the ECU directly power a nitrous oxide solenoid. All nitrous solenoids require more than the 2A rating for the ECU outputs.

11.0 Water/Methanol System Wiring

The following reviews how to properly wire a water/methanol injection system being controlled by a HP or Dominator ECU.

11.1 Required Wiring

There are two “required” outputs when using the W/M control - the W/M solenoid and W/M pump activation outputs. They are wired as follows:

Water/Meth Solenoid - The solenoids must be operated by a peak-and-hold injector driver output. The first choice is to use a non-used injector driver output from the ECU. If one is not available, PN 554-113 must be used. This is a two channel driver to operate two water/meth solenoids. If using 554-113, see its instructions for details on wiring.

A harness should come with each Holley water/meth solenoid. It plugs directly into the solenoid, and is pinned to be installed into the ECU. When you enable the water/meth ICF, it will automatically assign injector driver output pins. Either look at the Pin Map under “View Injectors” or the “Inputs/Outputs” tab under the Water Meth ICF to see what pin is assigned for each solenoid(s).
The wiring harness included has a red wire going to pin A on the solenoid connector. This wire should go to the injector output on the ECU. It has an ECU pin already attached. An extra ECU pin is included if this wire needed to be shortened and re-terminated.

The blue wire in the harness needs to be connected to a +12v switched power source capable of handling 2A.

Water/Meth Pump Activation – An output is created that is used to trigger the relay that powers the water/meth pump. It can be configured as +12v or ground depending on how the relay is wired.

CAUTION! Do NOT wire directly to the W/M Pump!

11.2 Optional Wiring

W/M Manual Enable - This is an optional input. If enabled, connect to a switched +12v or ground input as configured in the software.

W/M Low Fluid Warnings – If the “Low Reservoir Warning Enabled” is selected, an input and output is created which are as follows:

- **W/M Low Fluid Input** – This is the input from the fluid level sending unit that triggers the ECU as to a low fluid condition. Configure the software to whether this input is +12v or ground.

- **W/M Low Fluid Output** – This is an output from the ECU that can be used to go to a warning lamp or any other device in the event of a low fluid condition.

12.0 Electronic Transmission Wiring

Holley Dominator EFI currently supports the use of 4L60E, 4L65E, 4L70E, 4L80E, and 4L85E transmissions. PN 558-505 is a fully terminated harness for these applications. The following reviews installation of this harness.

Main Transmission Connector – Simply plugs into the connector on the transmission. Located on the drivers side of a 4L80E (installed horizontally) and the passenger side on a 4L60E (installed vertically).

Vehicle Speed Sensor (VSS)/Transmission Output Speed Sensor (OSS) – Located on the rear drivers side on a 4L80E and the rear passengers side on a 4L60E.

Input Shaft Speed (ISS) Sensor – The 4L60E does not have an ISS. It is located towards the front drivers side on a 4L80E. Note that a 4L70E has one internally wired, but is not connected to the HEFI harness. The ISS is not used for any calculations in the ECU, just for monitoring purposes.

Brake Switch (Grey) – Wired to the brake light switch. This must be installed to a +12v source (as most brake light switches are). This input is used to unlock the torque converter when the brakes are applied.

Ground (Black) – Connect to a good chassis/engine ground source

Power (Red) – Supplies power to the transmission solenoids. This should be connected to a +12v switched power source (must be capable of supplying 5 amps).

NOTE: The power supplying this wire must **NOT** be tied to the same point that the ECU switched power wire (red/white wire) is connected to. If they are tied together, the transmission power will back-feed power to the ECU and the ECU/engine will not shut off when the key is turned off. Use a relay or separate switched ignition power pickup point to supply power to the transmission harness.

See Figures 28 & 29 in 13.0 Wiring Appendix.
13.0 Wiring Appendix
271R960A
HOLLEY EFI MPFI
MAIN HARNESS
(HARNESS ONLY SALES P/N 558-104)

Figure 19
271R961A
HOLLEY EFI 4BBL
TBI HARNESS
(HARNESS ONLY SALES P/N 558-100)

Figure 21

<table>
<thead>
<tr>
<th>LOOSE LEADS</th>
<th>DESCRIPTION</th>
<th>27D LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>12V BATTERY</td>
<td>12V BATTERY</td>
<td></td>
</tr>
<tr>
<td>SW FUEL PUMP</td>
<td>SW FUEL PUMP</td>
<td></td>
</tr>
<tr>
<td>SW INJ SHUT</td>
<td>SW INJ SHUT</td>
<td></td>
</tr>
<tr>
<td>IGNITION</td>
<td>IGNITION</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>O2</td>
<td></td>
</tr>
</tbody>
</table>
271R962A LS2 MAIN HARNESS
(HARNESS ONLY SALES P/N 558-103)

Figure 23

<table>
<thead>
<tr>
<th>LOOSE LEADS</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOOSE LEADS</td>
<td>12V SWITCHED</td>
<td>1</td>
<td>72"</td>
</tr>
<tr>
<td>LOOSE LEADS</td>
<td>RELAY GROUND</td>
<td>1</td>
<td>72"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOOSE LEADS</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHASSIS GROUND</td>
<td>12V BATTERY</td>
<td>1</td>
<td>72"</td>
</tr>
<tr>
<td>CHASSIS GROUND</td>
<td>12V FUEL PUMP</td>
<td>1</td>
<td>72"</td>
</tr>
<tr>
<td>CHASSIS GROUND</td>
<td>TACHOMETER</td>
<td>1</td>
<td>72"</td>
</tr>
</tbody>
</table>
271R973A
HOLLEY EFI
STEALTHRAM & TPI
(WIRING HARNESS ONLY SALES P/N 558-101)

Figure 27
271R974A
GM 4L60-4L80E TRANSMISSION HARNESS

Figure 28

271R974A
GM 4L60E-4L80E TRANSMISSION HARNESS

Figure 29
Figure 30

271R998A
HOLLEY EFI
2BBL TBI HARNESS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>COLOR</th>
<th>WIRE GAUGE</th>
<th>PIN R</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Figure 30
Figure 31

271R998A
HOLLEY EFI
2BBL TBI HARNESS

LOOSE LEADS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>14V BATTERY</td>
<td>1</td>
<td>72"</td>
</tr>
<tr>
<td>14V FUEL PUMP</td>
<td>1</td>
<td>72"</td>
</tr>
<tr>
<td>POINTS/COILS</td>
<td>1</td>
<td>72"</td>
</tr>
<tr>
<td>IGNITION GROUND</td>
<td>1</td>
<td>72"</td>
</tr>
<tr>
<td>COIL IN</td>
<td>1</td>
<td>35"</td>
</tr>
</tbody>
</table>

Figure 31
Figure 33
Figure 34
Figure 35

HOLLEY TECHNICAL SUPPORT
1801 Russellville Road
Bowling Green, KY 42101
270-781-9741
www.holley.com